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Certain nonseparable elliptic equations may be transformed into a sequence of Poisson 
equations. The solutions of these equations are efficiently found using fast Poisson solvers. 
The method is illustrated by solving for the internal electric potential in convecting plasma 
clouds. 

1. INTRODUCTION 

In a recent review article by Detyna [4], it is stated that there are “no rapid elliptic 
solvers (RES) capable of solving a general nonseparable elliptic partial differential 
equation (EPDE) in 2- or 3-dimensions.” There exist, however, RES which may be 
applied to general separable EPDEs. It is the purpose of this paper to show that 
linear self-adjoint EPDEs have a series solution or have an iterative solution such 
that each term in the solution is described by a separable EPDE. RES in the form of 
fast Poisson solvers provide these terms. The solution procedure, which is an 
extension of the method described in Brackbill and Forslund [ 11, is illustrated with an 
example of the internal electric potential associated with nonlinear plasma transport. 

2. DERIVATION OF THE RECURSIVE SERIES 

Consider the self-adjoint, nonseparable generalization of Poisson’s equation in two 
dimensions 

where #0(x, y) is the unknown function. A and B are nonzero functions with the same 
sign. Depending on boundary condition (Dirichlet, Neumann, periodic, or mixed) 
S,(x, y) may have to satisfy certain compatibility conditions. 

Equation (l), in general, cannot be solved directly with rapid elliptic solvers. The 
solution of (1) is based on (1) splitting the derivatives into curl-free and gradient-free 
parts and (2) using the identities V x Vv = 0 and V . V x (b= 0 to isolate terms. 
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In two dimensions, we define the functions #,,, $, , and vO by 

A~=“W” I 84, 
ax ax ay ’ 

B*-“% 84, 
ay 8~ ax . 

Substitution of (2a) and (2b) into (1) yields Poisson’s equation, 

a2vo a2’vo axz+ ayi’ - = S,(x, Y). 

(24 

(2b) 

The equation for 4, is found by equating expressions for 3*$,/3x 3~) obtained from 
(2a) and (2b), 

Equation (4) is rewritten as 

g (A*!$j +$(B*$j =S,(x,y), 

(4) 

(5) 

where A* = 1/B, B” = l/A, and 

Equation (5) is of the same form as Eq. (1). A substitution similar to Eqs. (2a) and 
(2b), i.e., 

B” a#1 - @I a42 
ay ay ax’ 

yields another Poisson’s equation for v,, 

and another generalized Poisson’s equation for 4*, 

(6b) 

(7) 

(8) 
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where 

S,cx,y)=&&‘) +$(Btp). 
Substitution of (6a) and (6b) into (2a) and (2b) yields 

3&f y!!$+A [p?.g] 1) (94 

This process is continued to produce an infinite series solution for the derivatives of 
4 0, 

-= f (-1)” 340 

3X 
(loa) 

n=O 

The functions vrn are calculated recursively from Poisson’s equation, 

---=+ a% a2wrn =s 
a2 ay’ m 

{m = 0, 1, 2 ‘... ), 

(lob) 

(114 

where So is initially specified, 

and 

S 
2n+l=aX 

“(‘“)-$(+2) 
B ay 

{n=0,1,2,3 ,... }. (11~) 

Values of v/,,, (m = 0, 1, 2, 3...) may be obtained from Eq. (11) by using rapid 
elliptic solvers. Derivatives of each succeeding v,(x, y) are computed numerically 
and summed according to Eqs. (lOa) and (lob) until convergence is achieved. RMS 
convergence criteria which have been tested in our numerical examples use the error 
measure, 

E: = 

F; = 

(12) 

(13) 

where the integrals over x and y are numerical sums over the coordinate grid and #o,, 
is the potential defined by (lOa) and (lob) summed to n terms. The quantities in the 
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brackets in the numerators of (12) and (13) are constructed from the second term for 
n - 1 and the first terms for n in the series given by (lOa) and (lob). Computation of 
the summation continues until the fi+ E: < E, where e is much less than unity. 

3. DERIVATION OF THE ITERATIVE SOLUTION 

As an alternative to an infinite series solutions, an iterative solution is derived. The 
substitution, 

into Eq. (1) yields 

Dividing Eq. (14a) by A and differentiating with respect to y yields 

Similarly, Eq. (14b) becomes 

(14b) 

(15) 

(16a) 

(16b) 

Equating (16a) and (16b) gives 

$+$2&;j t;(L;j* (17) 

Eqs. (15) and (17) form the basis for the iteration. Let u,(x, y) and v,(x, y) be the 
values for u(x, y) and v(x, y) at iteration step n. Initially, uO(x, y) = 0 and 
u,,(x, y) = 0. The solution is found from the equations, 

2*kl+1 2*un+, 
7+--T- 

2Y 

= S,(x, y) - (A - B) * 
2A 2v 

2~ ay 
+-.+?!Eau, 

ax ay 2y ax' (18a) 

=- (A-B) a’%+, a -~ 
AB 2~ ay ay ax (18b) 
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Note that the left side of Eqs. (18a) and (18b) are Poisson’s equations. At each step 
in the iteration, the new estimates for (5, are given by 

(194 

(19b) 

The convergence criteria for the iteration is similar to the one for the series. Define 
the RMS error as 

E: = JJ [ 
%n ---~]*dxdy/~~ [$$]‘dxdy, ax 

E; = 
JJ [ 

%I --*]*dxd;jJj [+]'dxdy. 
ay 

(204 

(2Ob) 

Convergence occurs when fl+ E: < E. 
When A = B the second order terms on the right side of Eqs. (18a) and (18b) 

vanish leaving only first order derivatives in v, and u, + i . This leads us to speculate 
that the convergence will be more rapid for problems where A = B. Under these 
condition, Eq. (1) is conveniently written as 

v . (AV&)) = s,. (21) 

The only numerical examples that we have considered have A = B. 

4. BOUNDARY CONDITIONS 

The boundary specifications for the initial equation (1) are used to generate the 
Poisson’s equations (1 la) for the series solutions or Eqs. (18a) and (18b) for the 
iterative solutions. If the boundary conditions for (1) are Dirichlet or Neumann, then 
either ad,, ldx or @,/dy are known at each boundary. If we require 

when g is known 

or 

(22) 

aYo=g!.!& 
ay aY when % is known, 
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at a boundary, then (10) requires that 

!L, 
8X 

{n = 1,2, 3...} (23) 

or 

{n = 1, 2, 3 ,... }, respectively. 

Thus (22) and (23) are a consistent set of boundary conditions for the series 
solutions given by (lOa), (lob), (1 la), (1 lb), and (1 lc). 

For the iterative solution (18a) and (18b), we require either 

,=& au LL&% au 
ax ax Or ay ay ’ 

consistent with the conditions at the boundaries, yielding either 

E!i=O or au, -0 
3X ay- ’ 

(24) 

(25) 

at the boundaries, respectively. 
If the boundary conditions for (1) are periodic, then the boundary conditions for 

the related Poisson’s equations are also periodic. 
For conditions of Neumann or periodic boundary conditions, if #Jx, y) is a 

solution to Eq. (1) then so is $,, + C, where C is a constant. In order to uniquely solve 
Eq. (1) one must specify other conditions such as fl dO(x, y) dx dy = 0. The solution 
of all Poisson’s equations in this paper are similarly restricted. 

5. APPLICATION TO PLASMA TRANSPORT 

Both the recursive series procedure and the iterative procedure have been tested 
numerically. We find that they are identical with respect to convergence and solution 
accuracy. In this section, the use of the recursive series is described in detail. The 
results however, are also representative of the iterative procedure. 

The recursive series algorithm is tested using the transport equations for a plasma 
cloud in the presence of a neutral wind. 

an, 
at v, . lh21B”) vhl x 21 = 0 (26) 

(27) 

and 
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where _ne is the electron (or ion) concentration, @= B,z^ is the constant magnetic 
field, U,, is the neutral wind velocity in the x-y plane, #,, is the electrostatic potential 
produced by the polarizing effects of the neutral wind, and V, is the gradient in the 
x-y plane. The basis for these equations is well known (see, e.g., the reference by 
Ossakow et al. [IO]). Assumptions for derivation of these equations are (1) that ion 
inertia can be neglected and (2) that vin < fli, where vin is the ion neutral collision 
frequency and Qi is the ion cyclotron frequency. Such conditions are appropriate for 
the F-region ionosphere. 

Equation (26) describes the time evolution of the electron concentration n,(x, 1)). 
Equation (26) is solved numerically using the multidimensional flux-corrected 
transform (FCT) algorithm described by Zalesak [ 151. The potential is obtained from 
Eq. (27). 

Equation (27) is identical to Eq. (1) with 

‘4(x, y) = B(x, Y) = n.& Y> 

and 

S,(x, y) = (U, x B) * v,n,. 

Equation (28) is used to simplify Eqs. (1 lb) and (1 lc) with the result 

a+ a*y 2+ --.-J&s, ax* ay* {m = 0, 1, 2, 3...}, 

s _ 8% w*n-1 an, aw*n- 1 
2n 

~--- 
ax ay aJJ ax ’ 

and 

- 1 an, awzn 3% aw2, 
s -7-------- 2n+1= e [ ax ay I ay ax . 

(28) 

(29) 

(3Oc) 

Many methods have been used to solve potential equations of the form given by 
(27). Goldman et al. [6] solved a linearized, small cloud approximation using double 
fast-Fourier transforms. Scannapieco et al. [ 1 I] have used iterated ADI techniques. 
McDonald [9] describes an explicit Chebychev-iterative solution to this type of 
elliptic equation. Lewis and Rehm [8] use a conjugate gradient algorithm precon- 
ditioned by a fast Poisson solver. Hain [7] uses the incomplete Cholesky-conjugate 
gradient (ICCG) method for the iterative solution of Eq. (27). 

The method described in Section 2 provides a new approach for the solution of 
Eq. (27). Fast Poisson solvers such as described by Buneman [2], Buzbee et al. 131, 
Swarztrauber [ 121, and Sweet [ 141 may be used to provide solutions to (30a) with 
second-order or higher order accuracy. If the boundaries are doubly periodic, two 
dimensional fast-Fourier transforms can yield the solution to (30a). 
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FIG. 1. Initial (t = 0) plasma cloud and associated electrostatic potential. The neutral wind velocity 
is 100 m/set in the positive y direction. The electron concentration contours are scaled by IO5 cmm3. 
The potential contours are in volts. The potential was computed with the recursive series given by 
Eqs. (lOa) and (lob) truncated to the n = 6 term to yield an RMS error E = 10m~4. 

Note that Eq. (26) needs only the spatial derivatives of n(x, y). Consequently, the 
solutions in derivative form as given by Eq. (lOa) and (lob) may be used directly. 
The potential #,, may be computed by integrating (lOa) and (lob) subject to the 
boundary conditions. For a computational example, we consider the evolution of a 
plasma cloud initially described as 

n,(x, y) = N,[0.3 + exp{-[(x -x0)’ + 0 - Y0)*)1/2~*1 I- 
EL. CBNC. 
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FIG. 2. Plasma cloud and electrostatic potential at time t = 125 sec. Scaling is the same as in Fig. 1. 
The recursive series for the potential is truncated at n = 9 for E = 10m4. 
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where N, = lo6 e/cm3, x,, = y0 = 8 X lo3 m and c = 2 x lo3 m. The cloud is subject 
to a U, = 100 m/set wind velocity in the y direction. The computational mesh has 64 
points in the x direction (dx = 250 m) and 128 points in the y direction 
(dy = 250 m). The boundaries are periodic in both directions. The Poisson’s 
equations given by (30a), (30b), and (30~) are solved using the algorithms described 
by Swartztrauber and Sweet [ 131. The Fortran coding was completely vectorized for 
execution on the Los Alamos CRAYl computers. 

The development of the electron concentration and the electrostatic potential is 
shown in Figs. l-3. The plasma cloud moves in the y direction with a slip velocity 
that is 0.6 times the neutral wind velocity. The downwind side of the cloud steepens 
with time. The electric potential follows the motion of the cloud during its evolution. 
The results of these calculations are consistent with measurements of a similar 
plasma cloud produced by the Avefria DOS Barium experiment as reported by 
Fitzgerald et al. [5]. 

For this particular example, convergence is rapid. The convergence measures are 
given in Table I. With E = 10e4, the summations in Eqs. (lOa) and (lob) acquire the 
required accuracy for n = 6 during the early times of the simulation. At later times, 
after the plasma gradients increase, convergence occurs after the rt = 11 term is added 
in the series. 

The growth of small scale irregularities and potentials in the cloud is illustrated by 
the detailed calculations of Figs. 4-6. A l-km section of the cloud with a 1% 
sinusoidal perturbation is described by 

n,(s, y) = NoI 1 - 0.01 sin(k,x)]{0.3 + exp[(y - yJ2/202]}, (32) 

24 

22 

20 

t-.1.,.1 
0 2 4 6 E 10 12 14 16 

x lK"l 

FIG. 3. Plasma cloud and electrostatic potential at f = 220 sec. Scaling is the same as Fig. 1. The 
recursive series for the potential is truncated at n = 11 for E = 10m4. 
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TABLE I 

Convergence Parameters for Plasma Cloud Potential Computation 

Time Figure n 

0 set 1 1 2.11 x 10-I 
2 3.71 x 10-I 
3 6.84 x 10-l 
4 1.25 x 10m3 
5 2.29x lO-4 
6 4.20 x 10-j 

125 set 

220sec 

2 1 3.07 x 10-l 
2 8.12 x lo-* 
3 2.46 x lO-2 
4 1.40 x lo--’ 
5 2.26 x 1O-3 
6 6.91 x lo-” 
1 2.12 x lo-4 
8 6.51 x 10m5 
9 2.20x 1om5 

3 1 3.39 x 10-l 
2 1.08 x 10-l 
3 4.08 x lo-* 
4 1.52 x 10m2 
5 5.83 x 10-j 
6 2.23 x 10-l 
7 8.59 x IO-” 
8 3.31 x lo-” 
9 1.28 x 10-j 

10 4.93 x 1om5 
11 1.90 x 10 -J 

2.21 x 10-l 
3.88 x lo-* 
7.16 x 1O-3 
1.31 x 1om3 
2.40 x lO-4 
4.39 x lo-$ 

4.06 x 10-l 
1,15 x 10-l 
3.65 x lO-2 
1.12 x 10-l 
3.47 x 10-j 
1.07 x 10-j 
3.29 x 10m4 
1.01 x lo-4 
3.12 x IO-’ 

5.59 x 10-l 
1.90 x 10 ’ 
7.17 x 10-2 
2.97 x 10m2 
1.16 x lo-* 
4.47 x 10.-j 
1.74 x 10 3 
6.73 x 10mJ 
2.61 x IO-’ 
1.01 x lomJ 
3.90 x 10~~’ 

where k, = 27r/k,, 1, = lo3 m and the remaining parameters are defined in (31). The 
neutral wind velocity remains at 100 m/set. The computational mesh is 32 points in 
the x direction (dx = 3 1.25 m) and 64 points in the y direction (dy = 187.5 m). 

Initially, the section of the plasma cloud is almost uniform in the x direction 
(Fig. 4). The one percent perturbation of the cloud, coupled with the neutral wind 
produces an electrostatic potential which is nearly uniform in the y direction. This 
potential stabilizes the upwind side and destabilizes the downwind side of the cloud. 
The convergence parameters for this computation are given in Table II. The elec- 
trostatic potential in Fig. 4 is calculated using only three terms of the recursive series. 
Two minutes after the start of the simulation, the amplitude of the irregularity and the 
magnitude of the potential on the downwind side of the cloud increase by more than 
a factor of 50 (Fig. 5). The potential is a dipole and the n = 5 term is required for its 
calculation with the recursive series. At t = 155 set the plasma irregularity has 
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FIG. 4. Small (1%) perturbation of the plasma cloud at t = 0 and associated electrostatic potential. 
The maximum potential is 4.78 x 10-l V. The recursive series is truncated at n = 2 for E = 10m4. 

developed nonlinearly into a turbulent structure (Fig. 6). The potential has both 
dipole and quadrapole components. The potential for the fully developed turbulence 
(Fig. 6) requires only the n = 6 term for convergence. 

The large scale motion of the plasma cloud (Figs l-3) and the growth of small 

TABLE II 

Convergence Parameter for Small-Scale Potential Computations 

Time Figure n EX &Y 

0 set 4 1 2.18 x lo-’ 
2 6.71 x lO-6 

120 set 5 1 
2 
3 
4 
5 

155 set 6 1 1.53 x 10-l 1.63 x 10-l 
2 2.15 x lo-* 2.42 x 1O-2 
3 3.15 x lo-’ 3.86 x lo-’ 
4 4.69 x 1O-4 6.37 x 1O-4 
5 7.08 x 1O-5 1.07 x lo-’ 
6 1.09 x 1o-s 1.82 x lo-’ 

9.60 x 1O-2 
9.44 x 10-3 
9.93 x lo-4 
1.08 x 1O-4 
1.21 x 10-s 

1.68 x 1o-2 
6.85 x lo-’ 

1.28 x 10-l 
1.48 x lo-* 
1.79 x 1om4 
2.18 x 10m4 
2.65 x lo-’ 
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FIG. 5. Development of plasma irregularity and electrostatic potential at f = 120 sec. Maximum 
potential is 0.24 V. The recursive series is truncated at n = 5 for E = 10e4. 

scale irregularities (Figs. 4-6) are both efficiently calculated with a combination of 
the FCT algorithm for the plasma transport and the recursive-series algorithm for the 
electrostatic potential. Our future numerical calculations will be directed toward the 
use of these algorithms for more involved treatments of plasma motion in the 
ionosphere. 

FIG. 6. Late time (t = 155 set) development of plasma irregularities and electrostatic potential. 
Potential contours are in volts. The recursive series is truncated at n = 6 for E = 10mJ. 
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6. CONCLUSIONS 

We have shown that fast Poisson solvers can be used for the noniterative solution 
of the self-adjoint generalization of Poisson’s equation given by (1). For the test cases 
we have considered, the recursive-series solution and the iterative procedure converge 
rapidly. For other problems, simple modifications may be necessary to insure 
convergence. We have shown that solvers of separable EPDEs may be applied for the 
solution of certain nonseparable EPDEs. 
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